NNIN Etch Workshop Cornell University May 21, 2013

Cornell NanoScale Facility Dry Etch Capabilities

Vince Genova/Meredith Metzler CNF Research Staff

Dry Etch Systems

High Density Plasma (ICP): PlasmaTherm Versaline DRIE

Unaxis (PT) 770 DRIE PlasmaTherm 770 Oxford PlasmaLab 100-380

Trion Minilock III

Oxford PlasmaPro 100 Cobra (6/2013)

• RIE (parallel plate):

PlasmaTherm 720/740 (dual chamber) PlasmaTherm 72 Oxford PlasmaLab 80 (2)

Dry Etch Systems

- Dry release: Xactix XeF2
 Primaxx uetch
- PR strip/ash: Aura 1000

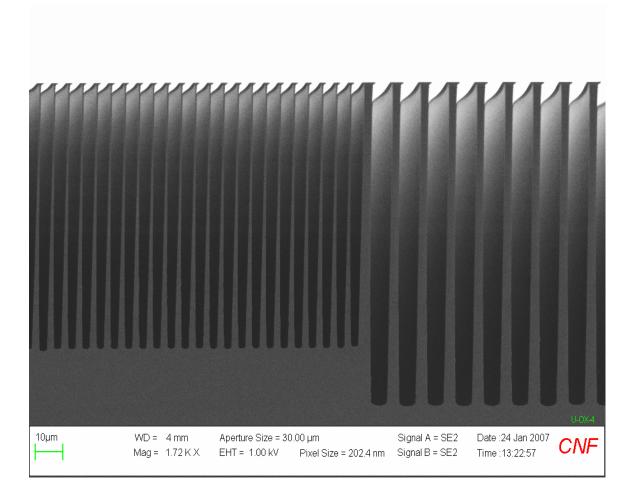
Branson barrel system

Glenn 1000

Yes CV200RFS

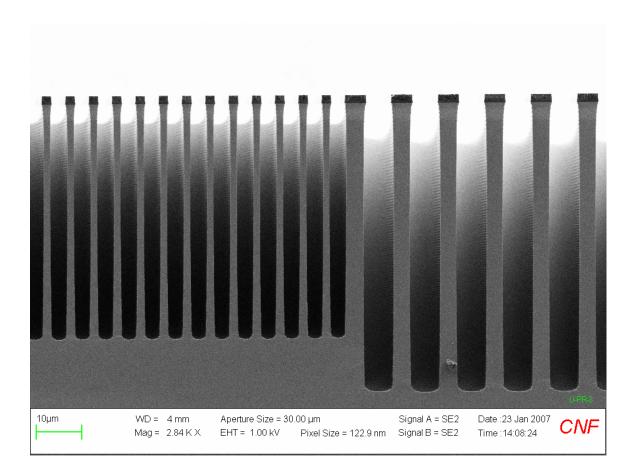
• Ion Milling: Veeco

AJA custom system (9/2013)



PlasmaTherm Versaline DRIE

- Timed multiplexed process (C4F8, SF6, Ar)
- SOI, HAR processes
- PR, SiO2, Al2O3 (ALD) masks
- 110:1, 340:1, >1000:1 selectivity
- 50:1 AR (trench), 200:1 (lines)
- Typical etch rates ~ 8um/min
- 100 mm wafer size, clamped
- Endpoint works OES



Versaline DSEIII-TMP deep silicon etch

35:1 aspect ratio Oxide selectivity = 333:1 Etch rate = 8um/min

Cornell University Cornell NanoScale Science and Technology Facility

Versaline DSEIII-TMP deep silicon etch

PR mask selectivity 120:1 Etch rate 8um/min

ALD alumina and Plasmatherm Versaline DRIE etching

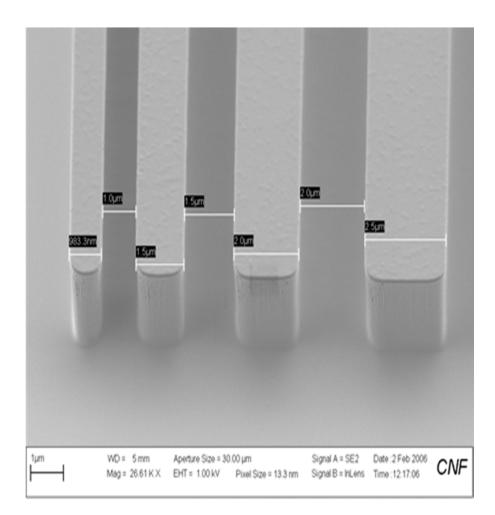
ALD alumina has shown to be a good etch mask for the new Versaline DRIE silicon etcher. The selectivity to silicon has been shown to be 2000:1. In the image above 15nm of ALD alumina was used to etch 25 microns into silicon. The alumina can be etched in a chlorine plasma or wet etched in basic developer.

Unaxis (Plasmatherm) 770 SLR DRIE

- Time multiplexed process lacksquare(SF6, C4F8, Ar)
- SF6 based release etch •
- Mixed etch (SF6+C4F8+O2) ۲ aka "photonics etch"
- Typical etch rates ~ 2um/min. ۲
- PR and oxide masks with 50:1 • and 200:1 selectivity.
- Aspect ratios up to 20:1
- 100mm, 150mm clamped

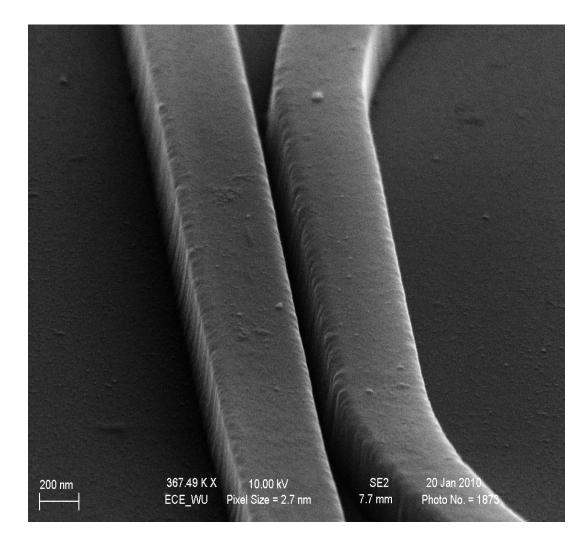
Plasmatherm 770-ICP

- Dual chamber ICP
- Left chamber shallow silicon (<10um), single xtal and polyxtalline.
 - Cl2 based chemistry
 - silicon oxide mask only (20:1)
 - 200nm/min etch rate
 - 100mm clamped
- Right chamber III-V's (Ga and In based materials) including ternaries and quaternaries.
 - PR, SiO2, Si3N4, and Ni masks.
 - 100mm clamped
 - non-heated electrode
 - Cl2, SiCl4, CH4, H2, SF6

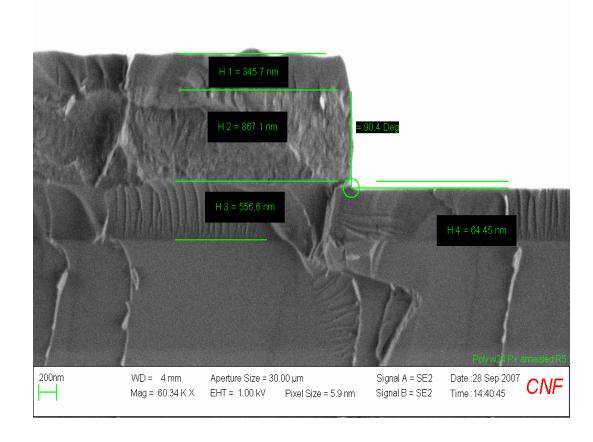


Cornell University Cornell NanoScale Science and Technology Facility

Plasmatherm 770 ICP


GaAs etch using BCI3 chemistry with pecvd oxide mask.

Plasmatherm 770 ICP

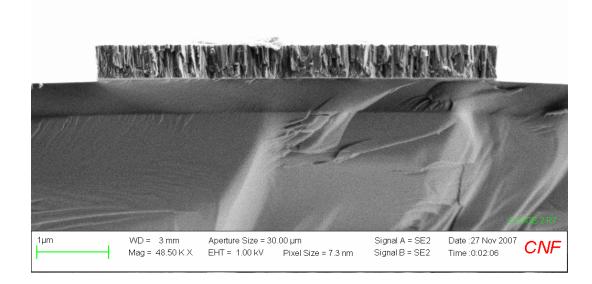

Ebeam defined SOI waveguide structure using HSQ mask etched with Cl2/BCl3/H2 chemistry.



Plasmatherm 770 ICP

Annealed P+ polysilicon on oxide etched in Cl2/BCl3 chemistry with PECVD oxide mask.

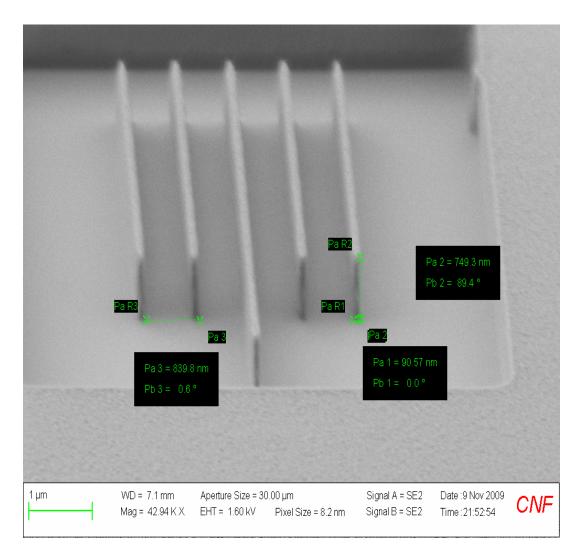
Trion Minilock III ICP


- Chrome etching only
- Cl2, O2, Ar based chemistry
- Up to 200mm wafers
- Up to 7" square mask plates
- Nanoimprint template fabrication (P-NIL)

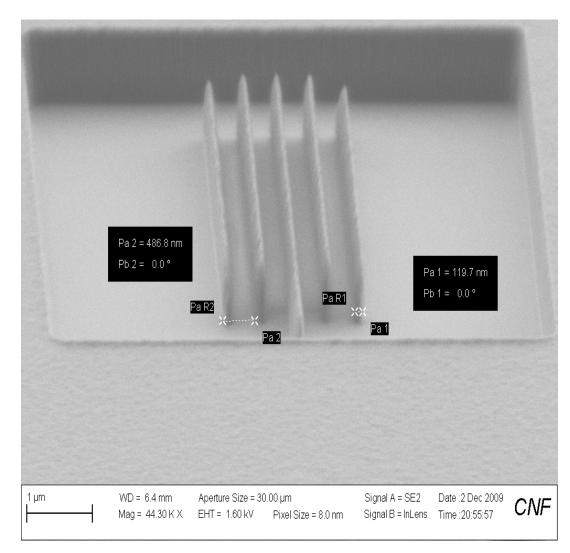
Trion Minilock III ICP

Chrome etched with Cl2/O2/Ar on SiO2 underlayer using 1800 series resist (removed).

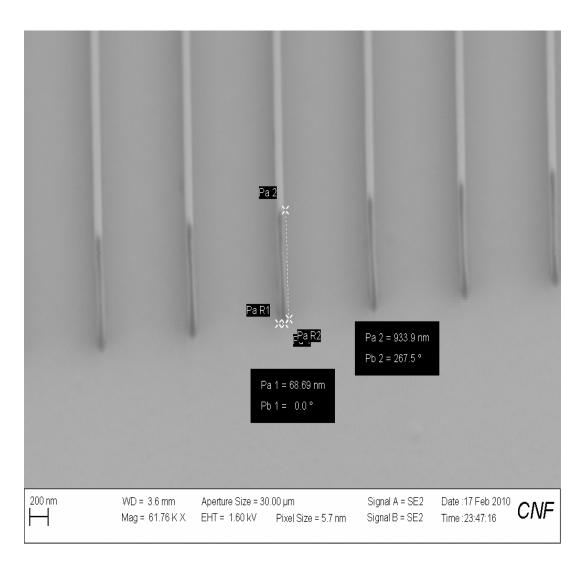
Oxford Plasmalab 100-ICP


- Silicon based dielectric etching (oxide, nitride, low stress nitride)
- Quartz and fused silica etching (no borofloat, pyrex, etc)
- Recent upgrade to 12 line gas pod and installation of gas ring in close proximity to the substrate.
- Low F/C ratio gas chemistries (C4F8, C2F6, C4F6, CH2F2, CHF3)
- Other gases (CF4, SF6, O2, Ar, N2, He)
- Switchable manifold for the showerhead or gas ring for low F/Cs.
- Enhanced selectivity to ebeam and deep UV

Oxford 100 ICP


90nm linewidth ASML DUV (248nm) silicon nitride etched with CHF3/O2

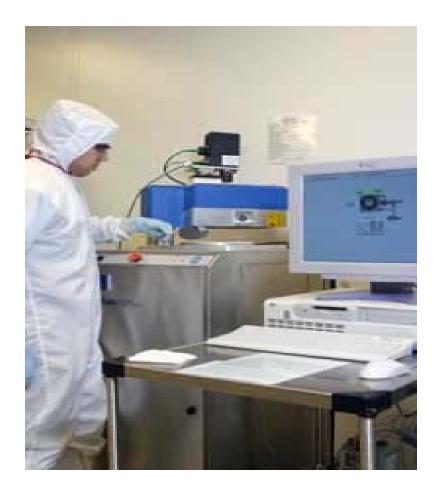
Oxford 100 ICP


119nm linewidth ASML DUV (248nm) defined silicon dioxide etched with CHF3/O2.

Oxford 100 ICP

Ebeam lithographically defined 68nm etched into fused silica with C4F8/CO2 using chrome mask.

Plasmatherm 720/740 RIE

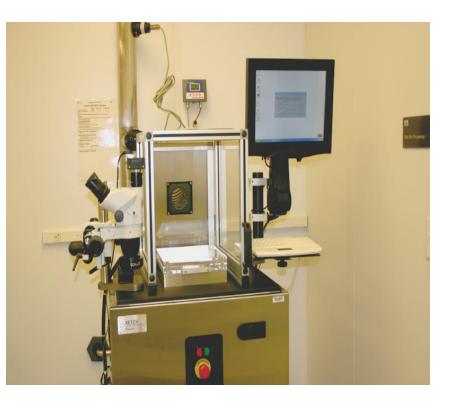

- 720: Cl2 based shallow silicon etch (single xtal or polycrystalline)
 - oxide mask only, 30:1 selectivity
 - up to 200mm wafers
 - etch rates up to 100nm/min
- 740: metal etching (mostly Al, but also Al2O3, Cr, Ta, and Nb)
 - Cl2 based chemistry
 - CH4 sidewall passivation
 - SF6/O2 for post etch passivation PE mode.
 - up to 200mm wafers.

Oxford Plasmalab 80s RIE

- Parallel plate conventional RIE
- Fluorine based chemistry: CF4, CHF3, SF6.
- Additives: Ar, O2, H2
- Primarily used to etch silicon based materials.
- 2 plasmalab 80 systems: 82 is limited to CMOS approved materials, while 81 includes other substrates such as III-V materials.
- DUV ARC (AR3) etch is available on both systems.
- Up to 200mm wafers.

Cornell University Cornell NanoScale Science and Technology Facility

Plasmatherm 72 RIE


- Conventional parallel plate RIE
- Fluorine based chemistry: CF4, CHF3, SF6.
- Additive gases include O2 and H2.
- Used mostly to etch silicon based materials, but other materials such as W and Ta are etched as well.
- Very few material restrictions, III-V materials ok
- Up to 200mm wafers.

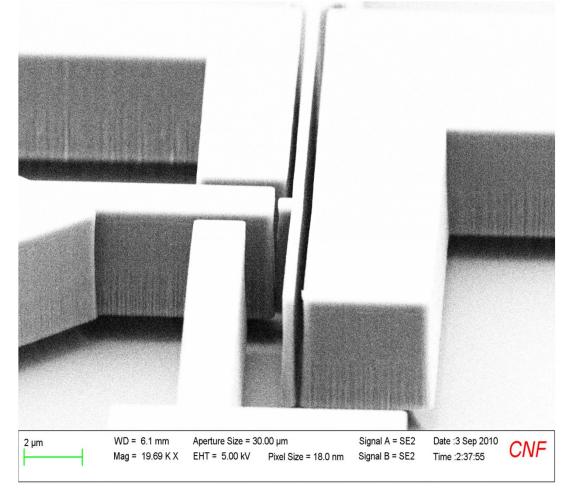
Xactix XeF2 vapor phase etch system

- Chemical isotropic etch of silicon, poly silicon, and amorphous silicon
- Large loading effect with respect to the amount of exposed silicon.
- Noticeable RIE-LAG aperture effect.
- Highly selective to silicon oxide, silicon nitride, resist, and metals such as Cr and Al. Not those metals that react with atomic fluorine.
- Ability to add nitrogen as a buffer gas to enhance nitride selectivity and to lessen surface roughness.
- Up to 150mm wafers.

Cornell University Cornell NanoScale Science and Technology Facility

Primaxx uetch vapor HF system

- Vapor phase isotropic etch of silicon oxide.
- Thermal, PECVD, and TEOS oxides.
- No doped oxides such as BSG, BPSG, PSG, due to formation of acids/corrosion.
- No resist masking.
- Selective to silicon, Al, Al2O3, TiW, SiC and LPCVD low stress silicon nitride.
- VHF, EtOH, and N2 are reaction components.
- Typical process pressures 50-150 torr.
- Process temperature 45C.
- Controlled thermal oxide etch rates up to 200nm/min.
- Need to O2 ash prior to etch to remove any CFx on surface acting as an inhibitor.
- If Si3N4 is present, need to hotplate bake at >160C to remove reaction product.
- Small (few nm) particulate formation. HSiFx?



Cornell University Cornell NanoScale Science and Technology Facility

Primaxx HF system

Successful release of silicon beams 25um in length, 500nm in width from SOI 2um BOX layer.

Plasma Ashing/Strip

- Aura 1000: downstream
 - -4" cassette to cassette
 - -heating option
 - up to 4um/min rate

- Glenn 1000: multi-shelf electrode configuration.
 - powered, grounded, or floating.
 - strip or descum.

- Branson: barrel type system
 - heat, strip, and descum.
- YES CV200RFS: 40kHz plasma isolated by grounded perforated metal plate.
 - strip or descum
 - heated to 250C.
 - N2 and Ar are available.

Veeco Ion Mill

- 10cm Kaufman Ar ion beam
- H2O cooled stage.
- 90 degree tilt with rotation.
- Up to 100mm wafers.

Oxford Instruments PlasmaPro System 100 Cobra June 2013 delivery

- Newly designed Cobra ICP source
- Wide temperature range (-150C \rightarrow 400C) lower electrode
- Up to 150mm wafers-clamped system.
- 12 line gas pod initially populated for HBr, Cl2, BCl3, H2, CH3OH, SF6, O2, and Ar.
- Later additions would be NH3, CO, and C4F8.
- Low frequency (350kHz) bias to the lower electrode
- LN2 auto changeover box for switches between cyro and chiller mode.
- Ocean Optics OES for endpoint and chamber condition monitoring.
- HBr based silicon etching
- Magnetic materials etching using CH3OH based chemistry.
- Alternative magnetic materials etching with NH3/CO based chemistry. (later)
- Deep silicon cryogenic based etch.
- Mixed silicon etch using SF6/C4F8. (later)

