Deep Dielectric Etching NNIN Etch Workshop 2013

Kevin Owen
Lurie Nanofabrication Facility

Outline

- Overview of RIE and stuff
- Masking options
- Making a good deep etch
- Chamber condition, cleaning
- Results
- Conclusions and future work

RIE – the Basic Technology

- Reactive Ion Etching is a gaseous, low pressure etch process whereby material is directionally removed via ion driven chemical reaction
- Anisotropy is achieved by balancing etch and etch resistance or passivation such that the etch only proceeds where the most energetic, normal ion collisions occur
- Originally used and developed for pattern definition in very thin CMOS materials – depth and aspect ratio minimal concerns
- Adapted by MEMS and nanofabrication for machining purposes

Why Deep, High Aspect Ratio?

- MEMS and Nanofabrication are often concerned with three dimensional structures
- Depth becomes a consideration when materials are used for mechanical or optical applications
- High Aspect ratio allows maintaining resolution and a tight package when deeper etches are required – results in less material waste and more devices per wafer – may be critical for optical gratings and lenses

Deep, High Aspect Ratio Defined

- Deep = anything greater than a few microns
 - Depends on material
 - 5 microns is deep for diamond
 - 500 microns is routine for silicon
- Aspect Ratio Depth divided by width for trenches

Aspect Ratio limitations generally refer to the area etched,

not the area remaining

Easier

Harder

Why Deep is Difficult

- Time consuming and expensive
- Process development slow
 - Very deep etches may take several hours to a full day
 - A multiple parameter DOE may take weeks or months
- Thicker, more resistant masking requirements
- Ion redirection by non-perpendicular electric field, side-wall

charging

Why High Aspect Ratio is difficult

- Ion penetration
 - lons that are not adequately normal to the substrate will not make it to the bottom of the feature
 - lons may be redirected within the trench toward the center or into the sidewalls
- Mass transport
 - Long, tortuous path for reactive species to get into the feature and for reaction byproducts to get out of the feature
- Result is ARDE and etch stop

Aspect Ratio Dependent Etching

- Also called RIE lag
- Higher aspect ratio features etch slower
- Typically insignificant below 1:1

What can I etch deep?

- Silicon etching is a very special case, perhaps unique there is no 'Bosch-like' process likely for most other materials
- Most other materials are significantly more difficult to etch

Silicon Carbide, Silica, and Diamond

- Silica, Silicon Carbide, and diamond etching have seen advances in recent years with significant recent focus on silica in particular
- All of these materials etch slowly, but unique material properties and lack of viable alternative machining mechanisms continue to drive efforts
- Silicon Carbide typically etches faster with cleaner chemistry, primarily SF6, and lower bias energies
- Silica typically etches with fluorocarbon chemistry which deposits around chamber and requires frequent cleaning
- We have little experience with diamond etching, but published data suggests potential rates similar to SiC and SiO₂ primary etch gas is O₂ and byproducts are CO and CO₂
- Due to slow etch rates, development is extremely slow for deep etches It may take a full day of processing and chamber maintenance to obtain a single data point
- Metal mask is commonly used with all of these materials, but has significant problems

Pyrex

- SiO₂, the primary component of glass etches similar to SiO₂, however the doped impurities cause problems
- Boron, sodium, and aluminum oxides make up around 20% of the material
 These oxide are non-volatile and must by physically sputtered away
- Very high bias voltage is required to drive this etch deep making mask selectivity difficult
- Redeposition and sloped sidewalls are common
- Chamber mechanical clean requirements are very frequent limiting the depth that may be achieved in a single etch
- Etches of 200 microns at rates nearing 1 micron per minute may be achieved, but at very high cost

Dielectrics and inert metals

- PZT, Al2O3, and ITO are very difficult to etch with a high percentage of non-volatile material that must be sputtered away
 - These materials are not appropriate for deep, high aspect ratio etching and RIE in general should be approached with caution
- Plasma inert metals including Platinum, Gold, and Nickel are removed entirely by sputtering
 - The sputtered material ends up back on the sample or on the walls of the chamber
 - These materials should be patterned by plating, lift-off, or wet etch whenever possible
 - Ion beam etching is an alternative for vertical features

How do I etch SiO₂?

- Typically use fluorocarbon based chemistries
 - Fluorocarbons also deposit on sample (teflon)
- How do we counteract deposition?
 - Sputter it off (high power)
 - Noble gas dilution (e.g. Ar, He)
- Typically, this results in very low selectivity
- Low pressure is necessary, particularly for high aspect ratio etching

Masking Options

- Hard masks
 - Metals (e.g. Ni)
 - Silicon
- Polymer masks
 - Standard photoresist
 - Epoxies (e.g. SU-8)

Metal Masks

Pros

High selectivity (up to 30:1)

Cons

- Difficult to pattern
 - Thick, usually plated
 - High stress
- Can disrupt plasma
- Can cause micro-masking due to re-sputtering
- Very "dirty"

Problems With Metal Mask

- Metal masks are chosen because they are not reactive with the etch chemistry and are physically sputtered away, maximizing selectivity
- This non-volatile sputtered material contaminates the sample and the chamber
 - Very low pressure must be used to extend the mean free path and minimize redeposition within the features
 - Chamber ceramics coated with conductive metal may result in a shift in plasma properties, plasma instability, or even failure of the ceramics
 - Frequent chamber cleans are required

Problems With Metal Mask 2

Silicon Carbide Etch performed at LNF Using a Plated Nickel Mask

Avoid Metal Mask Whenever Possible

- After early problems, efforts at the LNF have shifted away from metal masking
- Primary focus has been on silicon and KMPR
- Silicon is useful in etching silica and glass
 - The fluorocarbon chemistry typically used passivates the silicon and minimizes etching
 - Silicon is, however, still reactive with the chemistry and much of what is removed is exhausted via the pumping system
 - It is easy to make very thick masks by bonding a full thickness silicon wafer and etching via Bosch process
 - It is more difficult to make thinner masks when attempting to optimize resolution
- KMPR is a negative tone resist that may be patterned up to 100 micron in a single spin and is stable at much higher temperature than standard resist

Si Masks

Pros

- Can have good selectivity (up to 15:1)
- Easy to pattern
 - Can use Bosch process

Cons

- Difficult to create
 - poly-Si has high stress
 - For deep etching, requires bonding a thin wafer
- Mask faceting lowers selectivity

Notes on Selectivity

- Quoted selectivity numbers almost always reference bulk material to bulk material
- Slower etch rate of high aspect ratio features result in much lower selectivity
- Faceting of the mask can reduce selectivity much further still
- We have achieved bulk selectivity between silica and silicon of 15:1, to KMPR of
 7:1, but effective selectivity of KMPR is higher due to less faceting
- Effective selectivity for 10 micron silica trenches approaching 5:1 aspect ratio are around 4:1 for KMPR and 2:1 for silicon thus far

Si Masks

- Generally we see good bulk selectivity (>15:1)
- Mask faceting is a serious issue

Polymer Masks

Pros

- Easy to pattern
- Easy to remove, clean
- Post-process chamber clean is simple

Cons

- Thickness limitations
 - Standard PR limit ~20um
 - SU-8, KMPR can be patterned much thicker
- Typically low selectivity
 - ~2:1 for standard PR
- Low temperature tolerance

KMPR/SU-8 as a Mask

- Standard PR has low temperature tolerance
 - Can easily burn due to heat generated by plasma and ion bombardment
- SU-8 and KMPR are much more stable
- Slightly higher selectivity
- Both can be stripped using an O₂/CF₄ plasma

KMPR Patterning

- Can easily pattern up to 25µm
 - Thicker is harder, but very possible
- Develops in AZ 300
- Good resolution
 - 2μm features in 18μm of resist
- Vertical profile
 - Less risk of faceting

— ...

uk submicron etch

- Power
 - 1400W coil
 - 300W platen
- Pressure 4mTorr
- Gas
 - 10sccm C4F8
 - 174sccm He
- 0.24µm/min bulk etch rate

Improving Selectivity

H₂ addition can vastly improve selectivity

1400/400W

30:180 C4F8:He

Selectivity: 2:1

1400W/400W

30:20:170 C4F8:H2:He

Selectivity: ~4:1

Notes on Aspect Ratio

- Aspect ratio numbers are almost always quoted based on long trenches
- Holes are much more difficult to etch due to additional ion shielding and mass transport restriction
- Typically aspect ratio capability for holes is around 1/3 of that quoted for trenches
- Corners are effectively very high aspect ratio structures and they will tend to round as the etch progresses deeper

Increasing etch rate

- Increased power
- Increased flow rate/ratio
 - More H2 improved selectivity, to a point
 - With H2, can have a larger C4F8:He ratio

Noble Gas Dilution

Helium Argon

19.9um 59.4um

Noble Gas Dilution

Final-ish process

- Power
 - 1400W coil
 - 600W platen
- Pressure 6mTorr
- Gas
 - 35sccm C4F8
 - 40sccm H2
 - 200sccm He
- 0.48µm/min bulk etch rate

150 min etch

- Resolution not equivalent to metal mask yet, but getting closer
- · 'Effective Selectivity' better than silicon mask

Process Variation

One time...

Another time...

Effect of Chamber Condition

- Etch results can vary significantly with chamber condition
 - Likely results from a change in sheath potential between sample and plasma
 - Most obvious later in the process

We added a ground strap to the platen – improved things

significantly

Chamber Cleans

- Add chamber cleans every 30min
 - Combination of SF₆ and O₂/CF₄ plasmas
 - 60min is too long without a clean
- Improved repeatability between etches
- Makes wet cleans much easier

Another fun pic...

Final Results

• 4hr etch

• 48µm SU-8 mask

Results published in:

Z. Cao, et al. *MEMS 2013.*

Final Results

- 9hr etch
- 100μm SU-8 mask
 - Did not have great patterning
- Two wet cleans in between etching

Final Results

Issues moving forward

- We need better patterning of thick masks
 - i-line filtering of contact aligners
 - Reflective coating underneath (e.g. poly-Si)
 - Also could improve sidewall roughness
- How do we determine if chamber condition is good enough?
 - Working on a short nanoscale etch that can tell us
- Tool redesign

Tool redesign

Process Kits

- Comes with quartz ring
 - Gets etched during process
 - Plasma has no way to "talk" to the platen
- Have designed new process kit, not tested

Tool redesign Bias Power Supply

- Many effects and variability seem to come from charging
 - Pegasus tools come with low frequency, pulsed power supply
 - STS does not have a high power pulsed power supply option
 - We have investigated possible power supplies to integrate
- Low frequency power supply may actually improve ion energy

Tool redesign

Bias Power Supply

Conclusions

- Deep glass etching is HARD
 - Many of the tools out today are not the best
- We have shown significant improvement
 - For fused silica etching, mainly: almost 300μm deep
- Chamber condition and charging seem to be the most significant challenges
- Nanoscale deep etching is a goal for us currently
- Processing is more fun than fixing tools

Notes on Heat

- The high power requirements of many deep etches create a great deal of heat
 - The plasma is hot
 - The chamber is hot to prevent redeposition
 - The reactions are often highly exothermic
- Good Cooling is critical poor cooling may be catastrophic
- Good design should consider the transport path of heat from the surface of the sample and the etch interface to the cooled chuck
- Special circumstances that merit extra consideration
 - Bonded wafers with cavities particularly if the bottom wafer is glass
 - Mounting to a handle to add structural support
 - Two sided etching where the etches meet

Electrostatic or Mechanical Chucking

- **Electrostatic Chucks**
 - Better cooling due to closer proximity of wafer
 - No bowing due to evenly distributed force
 - Better uniformity
 - Etch more perpendicular across wafer

- Intolerant to particulates high rate of clamping failure in a research environment
- Intolerant to topography on the bottom particularly near the perimeter
- Most cannot clamp insulators
- **Mechanical Clamping**
 - Devices lost near the perimeter exclusion area larger
 - Wafer bowing
 - Stress on wafer necessitates a handle much more frequently
 - Much more tolerant to variances on the wafer back side
 - Will clamp any material

Helium

Conclusions

- Deep, high aspect ratio etching is difficult, particularly if the material is not silicon
- Maximize your chances of success
 - Minimize, depth and aspect ratio requirements as much as possible during the design phase
 - Consider thinner substrates or etching from both sides
 - Stick with well established processes
 - Remain within repeatedly published parameters when your existing processes aren't adequate
 - Remember, published data is often best case scenario on optimized test patterns
 - Process parameters do not translate exactly from one tool to another

Remember

- Avoid metal mask if at all possible minimize exposed metal if you must use it
- Quoted mask selectivity usually references bulk material, high aspect ratio structures will experience much lower selectivity
- Quoted aspect ratios apply to trenches hole capability is around 1/3

