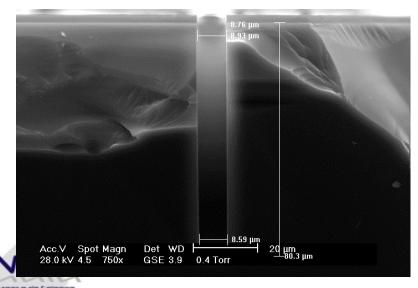
LNF Equipment Overview NNIN Etch Workshop 2013

Kevin Owen
Lurie Nanofabrication Facility

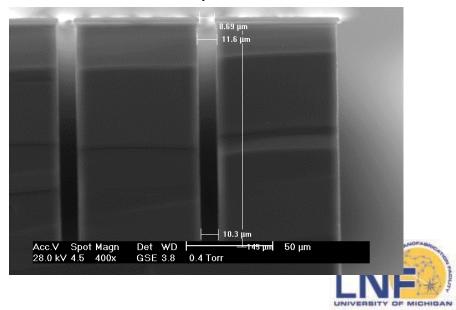
- Powerful ICP etcher for Bosch process DRIE
- Two tools, one 4" one 6"
 - Smaller samples can be mounted to a carrier
 - Electrostatic chuck
 - Temperature range -15-50C
- Designed for high aspect ratio Si etching
 - Can also etch dielectrics and organics for preparing masks

- Gases
 - $-SF_6$
 - $-C_4F_8$
 - $-O_2$
 - Ar
- Masking materials
 - Photoresist
 - Oxide
 - Metals allowed, not recommended

- ICP coil
 - 13.56Mhz
 - Up to 6000W
- Two platen supplies
 - 13.56MHz
 - 380kHz, pulsed
 - Up to 300W
- Pressure range
 - 5mT 100mT



Standard Recipes


LNF Recipe 1

- General recipe, minimal undercut
- 2μm etch rate: 2.76μm/min
- 10μm etch rate: 4.02μm/min
- 100μm etch rate: 5.6μm/min
- PR etch rate: 84nm/min
- Scalloping width/depth: 86/321nm
- Undercut: 75nm

LNF Recipe 2

- Faster recipe, worse sidewalls
- 2μm etch rate: 4.69μm/min
- 10μm etch rate: 7.25μm/min
- 100μm etch rate: 12.1μm/min
- PR etch rate: 61nm/min
- Scalloping width/depth: 0.5/2.3μm
- Undercut: 1.06μm

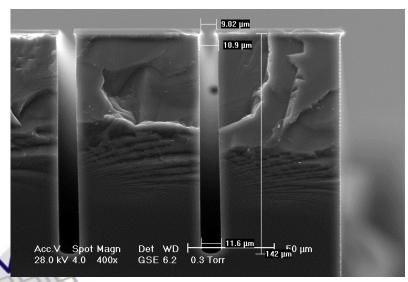
Standard Recipes

LNF Recipe 3

• Like Recipe 2, for bigger open area

• 2μm etch rate: 4.63μm/min

• 10μm etch rate: 7.1μm/min


100μm etch rate: 12.5μm/min

PR etch rate: 77nm/min

Scalloping width/depth: 0.5/2.2μm

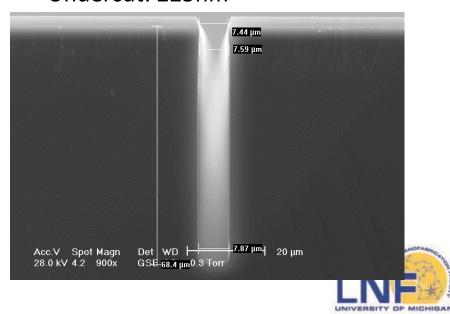
Undercut: 483nm

Engineering & Technology

LNF Recipe 4

High aspect ratio, small areas

• 2μm etch rate: 2.3μm/min


10μm etch rate: 3.4μm/min

100μm etch rate: 5.25μm/min

PR etch rate: 60nm/min

Scalloping width/depth: 80/300nm

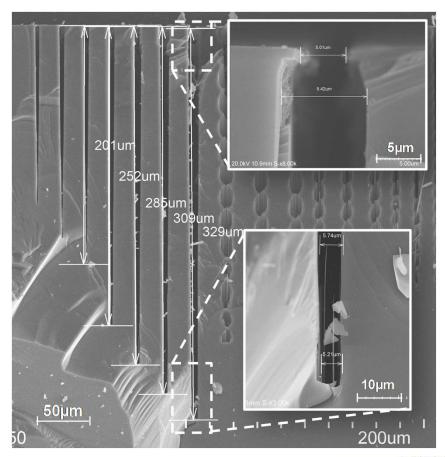
Undercut: 225nm

STS Pegasus Other Recipes

- Polysilicon etch (3000-5000Å/min)
- Oxynitride etch (900-1400Å/min)
- Si thinning etch (3-5μm/min)
- Descum recipes
 - $-O_2$ descum
 - Ar descum

Capabilities and Features

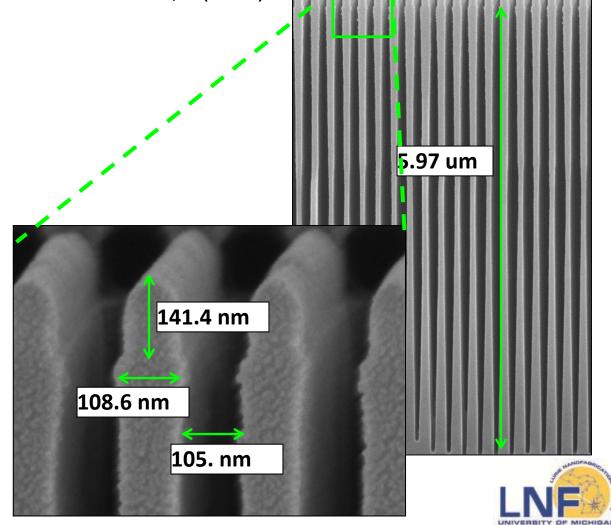
- Fast switching capabilities
 - Match unit, MFCs, throttle valve
 - Short path from MFCs to gas inlet
- Pulsed bias power supply
 - Discharges sidewalls, mask, etc
 - Reduces notching and pinch-off
- Parameter ramping
 - Compensate for ARDE
- Multiple "sub-steps"
 - Within passivation and etch step
 - Most useful for passivation breakthrough



STS Pegasus Custom Recipes

K. Owen, et al., MEMS, 2012 IEEE 25th Intl. Conf., 251-254 (2012).

- Reducing effect of ARDE
 - Parameter ramping
 - Mainly etch/dep step times, power, pressure
- Good for 1-10µm features
- Highest AR reported
 - 70:1 for a 5.7 μ m trench
 - 97:1 for a 3 μ m trench



STS Pegasus Custom Recipes

P. Mukherjee, et al. J. Vac. Sci. Technol. B. 28, 6 (2010).

- Nanoscale DRIE
 - <1 μ m features
- Challenges
 - Scalloping
 - Undercut
 - Bowing
- Final AR59.7:1 for 100nm

Maintenance & Qualification

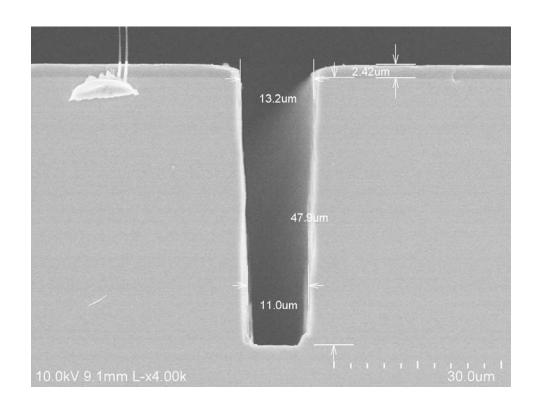
- O₂ clean run between every wafer
- Weekly Maintenance
 - Inspect, clean chamber
 - Chamber leak rate
 - MFC check
 - Wafer centering
 - Recipe backup, maintenance
- Weekly Qualification
 - Recipe 1 etch
 - Break down the Bosch Process
 - Etch test, Passivation test, DC Boost test

- ICP system for deep etching of dielectrics
- Configured for 6" wafers
 - Smaller samples may be mounted to a carrier
 - Electrostatic chuck
 - Temperature control -15-50C
- High aspect ratio etching from nanoscale up to very large features

- Gases
 - SF6
 - C4F8
 - -02
 - Ar
 - He
 - H2

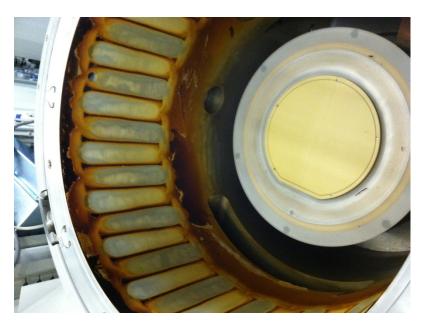
- ICP coil
 - 13.56Mhz
 - Up to 2000W
- Platen supply
 - 13.56MHz
 - Up to 1000W

Recipes


- uk_submicron etch
 - Standard oxide etch
 - 2200Å/min etch rate
 - 2:1 PR selectivity
 - Vertical sidewalls
- Quartz etch
 - Faster oxide etch
 - More fluorocarbonbuildup non-verticalsidewall

- Fused Silica etch
 - Deep etch
 - 5000Å/min
 - 5:1 PR selectivity
- Rhenium
- Silicon Carbide
- PZT

Recipes



Maintenance & Qualification

- O₂/CF₄, SF₆ cleans run between every wafer
- Weekly Maintenance
 - Inspect, clean chamber
 - Chamber leak rate
 - Wafer centering
 - O₂ clean, C₄F₈ condition

- ICP system for dielectric, semiconductor, and polymer etching
- Configured for 6" wafers
 - Smaller samples may be mounted to a carrier
 - Electrostatic chuck
 - Chuck temperature range:-40C to 80C

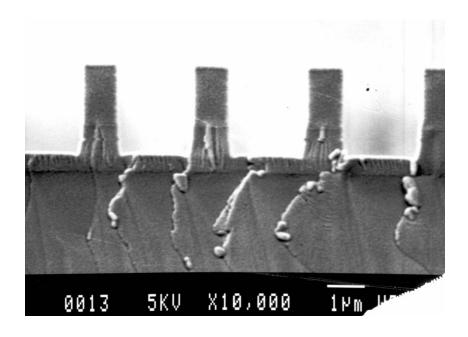
- Gases
 - $-Cl_2$
 - $-BCl_3$
 - HBr
 - $-C_4F_8$
 - $-SF_6$
 - $-O_2$
 - Ar
 - He

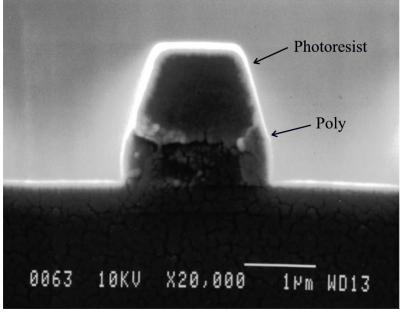
- ICP coil
 - 13.56Mhz
 - Up to 1000W
- Platen supply
 - 13.56MHz
 - Up to 1000W
- Pressure range
 - 5mT to 300mT

Capabilities

- LNF Supported Recipes
 - Polysilicon (1500Å/min)
 - Oxide (1500Å/min)
 - Nitride
 - Oxynitride (1600Å/min)
 - Parylene (750Å/min)

- Other Recipes
 - GaAs
 - AIN
 - PDMS
 - Polymers
 - InP, GaN, etc
 - Reactive metals (W, Cr, Mo, Al, Ti)





Capabilities

mnf_oxide_1

mnf_poly_2

Maintenance & Qualification

- Series of O₂, SF₆, Cl₂
 cleans before each wafer
 - Depends on gas chemistry
- Weekly Maintenance
 - Clean load cassettes, shuttle arm
 - Chamber leak rate
- Monthly Maintenance
 - Chamber inspection/clean
 - Gas flow calibration
- Yearly pump maintenance

- Weekly Qualification
 - Blanket oxide etch

- Parallel plate system
- Configured with both etch and PECVD chambers
- Can handle any sample size up to 4"
 - Unclamped
- Mainly for etching silicon based dielectrics and organics

- Gases
 - $-SF_6$
 - $-CF_4$
 - CHF₃
 - $-O_2$
 - Ar
 - $-H_2$
 - He

- RF generator
 - 13.56MHz
 - Up to 500W
- Pressure Range
 - 5mT to 300mT

Capabilities

- LNF Supported Recipes
 - Oxide (250A/min)
 - Nitride (250A/min)

- Other processes
 - Polymer etching (parylene, polyimide, photoresist descum)
 - Polysilicon

Maintenance & Qualification

- O₂ clean run after each process
- Weekly maintenance
 - Chamber clean
 - Chamber leak rate
- Monthly maintenance
 - Gauge calibration
- Every 2-3 months
 - Chamber bead blasting

- Weekly qualification
 - Blanket oxide etch

Oxford Plasmalab 100

- ICP etcher designed for III-V materials
- Mechanical clamping of 4" wafer
 - Etch uniformity only 1 ½ inch diameter
 - Samples can be mounted to a carrier
- Cryogenic chuck
 - -150-350C

Oxford Plasmalab 100

- Gases
 - $-Cl_2$
 - $-CH_4$
 - $-H_2$
 - $-O_2$
 - Ar
 - $-BCl_3$

- ICP coil
 - 600W
- Platen supply
 - 600W
- Pressure range
 - -2mT 60mT

Oxford

- Processes
 - Few lab supported recipes
 - Some recipes from Oxford
- Other capabilities
 - Anisotropic polymer
 etch (nanoimprint residual layer removal)

- Weekly maintenance
 - Chamber leak rate
- Monthly maintenance
 - Chamber inspect, clean
 - Gauge calibration

YES CV200RFS

- Downstream plasma system for organics etching
- Handles samples up to 8" diameter
- Sample thickness limited to ~2mm
- Can etch from 100s of A/min to over 1um/min

YES CV200RFS

- Gases
 - $-O_2$
 - Ar
 - $-N_2$
 - $-NF_3$

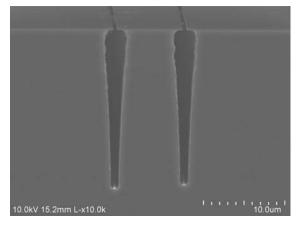
Upper electrode

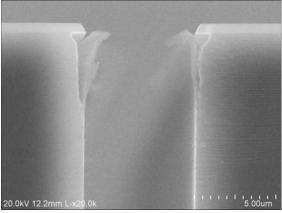
- Heated chuck
 - Up to 250C
- Variable frequency RF generator
 - 35-45kHz
 - Up to 1000W

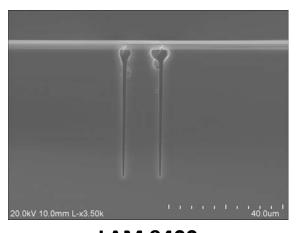
YES CV200RFS

Capabilities

- Fast polymer stripping
 - 6000Å/min
 - 800W
 - 150°C
- Slow photoresist descum
 - 600Å/min
 - 100W
 - 60°C


- KMPR stripping
 - Several μm/min
 - $-10\% NF_3$
 - Will etch oxide slowly
- Fluorocarbon removal
 - High temperature necessary





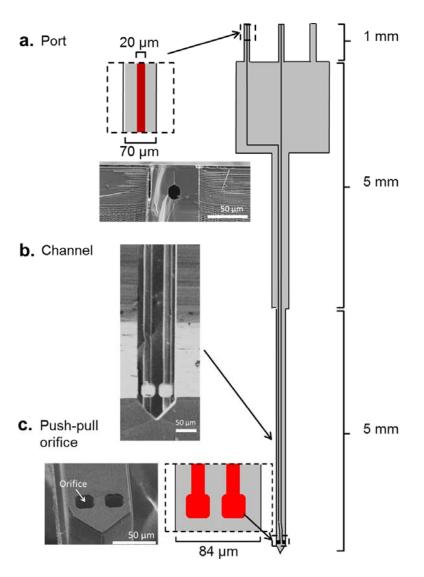
Fluorocarbon Removal

- Significant testing done to remove FC after RIE etching (particularly Bosch process DRIE)
- YES is the best way to do it
 - Likely due to the heated chuck
- Tested using XeF₂ etch

YES CV200RFS

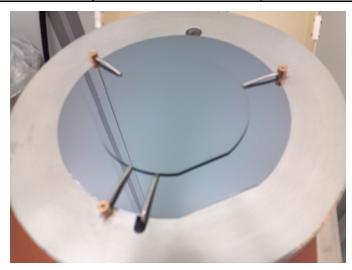
STS Pegasus

LAM 9400


Xactix Xetch

- XeF2 etch system
- Very high selectivity etching of Si, Mo, Ge
- Gases
 - XeF₂
 - $-N_2$
- Up to 6" wafers
- Pressure range 1-5T
- Can be used for device release
 - Can undercut layers as thin as 20nm
 - Can undercut mm's deep
- Very nonuniform

Xactix Xetch



W. H. Lee, et al. *Analytical Chemistry*. 85, 2013.

Wafer mounting

Mounting Material	Temperature	Removal	Thermal	Material
	Range		Conductance	Compatibility
Crystalbond 555	< 50°C	DI, PRS2000	OK	Reacts with PR
Crystalbond 509	< 120°C	Acetone	OK	Reacts with PR
Santovac 5		Acetone	Good	Reacts with PR
PFPE		IPA (nonsoluble)	Poor	
Photoresist		PRS2000, Acetone	Poor	
KMPR	< 300°C	Remover PG	Good	
WaferBond CR200		Xylenes, Acetone, IPA	OK	

Future Tools/Projects

- P5000 RIE system
- Etch process characterization
- Glass etcher redesign
 - Deep, also nanoscale FS, oxide
- Better nanoscale etch support
 - Nanoimprint lithography

P5000 RIE System

- Three chambers
 - One for polysilicon
 - Two for dielectrics
 - One configured for DLC deposition
- Configured for 6" wafers
 - Electrostatic chuck, normally at 40°C
- Fast etch rates seen

Etch Process Characterization

- We currently lack extensive process data for many of etch recipes used
- It is vital that we improve in this area
 - Improve user experience
 - Increase our own knowledge
- How can we achieve this?

Etch Process Characterization

Etched Material

- ...Needed
 - Etch rate
 - Sidewall profile
 - CD loss
 - Uniformity
 - Repeatability
- There are a lot of materials
 - And a lot of "duplicates"
 - But they may behave differently

Masking Material

- We need
 - Bulk material etch rate
 - "Effective" etch rate
- Again, there are a lot of masks to choose from

