

Washington University in St. Louis Etching Capabilities

Nathan Reed nreed@wustl.edu

Washington University in St. Louis School of Engineering & Applied Science

Oxford Plasmalab System 100- ICP180

Process chamber: ICP180 for 4" wafers

Chamber heating: Yes

Lower electrode type: Clamped ICP source: ICP180 2000W

Lower electrode power supply/automatch: 600W + vacuum cap automatch

Vacuum gauges: 100mT CM gauge + Penning

Pumping pipework/APC valve: 160mm + 200mm VAT Toxic gas lines/MFCs: **20 NF₃**, **100 BCl₃**, **100 Cl₂**

Non-toxic gas lines/MFCs: 100CF₄, 100 O₂, 100 CHF₃, 100 Ar, 100 N₂, 100 He, 100SF₆

Loadlock: Single wafer

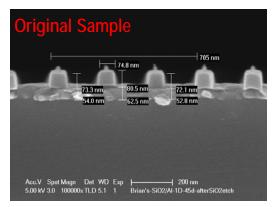
Heater/chiller: Yes 10 to 90'C

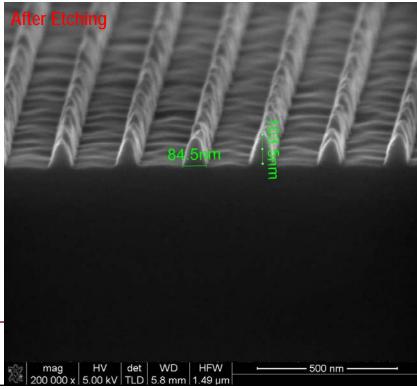
Endpoint Detectors: Integrated Laser Interferometer End Point Detector

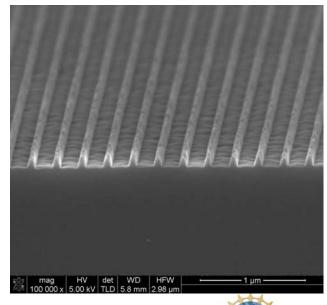
Chamber Pumps: Aclatel 500l/s magnetic turbo pump backed by Alcatel 2063 Wet Pump

Loadlock Pumps: From Process backing

Gas	Application
CF4	
SF6	Si
CHF3	SiO2
NF3	Si, SiC
BCI3	Al
CI2	III-V, AI
HBr	III-V
Ar	additive
02	polymer
He	cooling
CH4	III-V
H2	III-V
755	

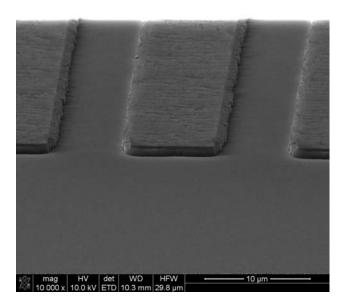




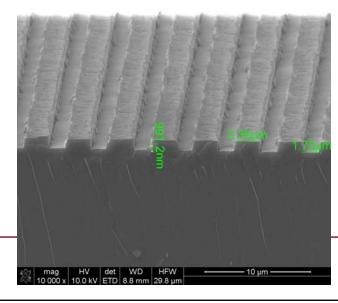

Aluminum Etching

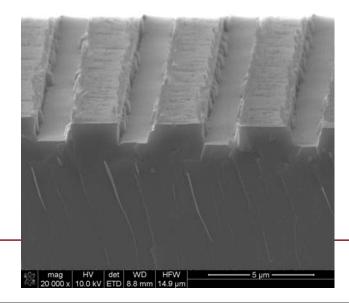
Sample: Aluminum film (80-nm thick) on silicon wafer, masked with SiO2 patterns (75-nm lines, 70-nm thick)

Recipe: 20sccm Cl2, 5mTorr, 200W, 1000W, 10Torr He, 80C, 10sec 20sccm HBr, 2mTorr, 100W, 800W, 10Torr He, 80C, 40sec



NANO RESEARCH FACILITY


Silicon Etching



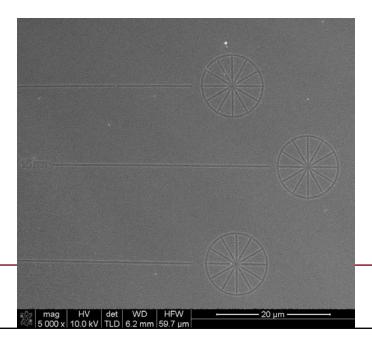
Sample: silicon wafer, masked with AZ5214 patterns (2-um lines, 10-um lines, etc.)

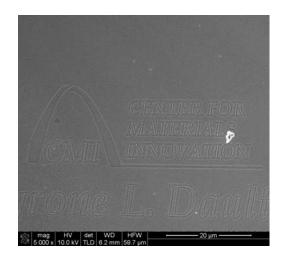
Recipe: 50sccm HBr, 7mTorr, 50W, 750W, 10Torr He, 50C, 5min

Note: the roughness of silicon ribbon edges was transferred from AZ patterns.

GaAs Etching

Sample: GaAs wafer, masked with PMMA patterns (e-beam lithography)


Recipe: 50sccm BrCl3, 5mTorr, 200W, 600W, 10Torr He, 10C, 30sec


30sccm BCl3, 80sccm Cl2, 7mTorr, 115W, 600W, 10mTorr He, 10C, 15sec

Etch rate: ~ 1µm/min

Selectivity to resist: ~ 5-15:1 Selectivity to oxide: ~ 15-30:1

Profile: Anisotropic

Chamber Conditioning

- 15 minute O₂ after each run
- 1 hour clean each month
- User discretion for additional conditioning based on previous runs

Future Plans

- No new tool acquisitions
- Development of new baselines, recipes, and SOPs
- Development of new maintenance strategies

Questions?

nano.wustl.edu nreed@wustl.edu

